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We study the ground state degeneracy per @tgponent of the ground state entropy/(A,(Ly= )
XLy ,q) for the g-state Potts antiferromagnet on infinitely long strips with witlghof 2D latticesA with free
and periodic boundary conditions in thedirection, denoted FBCand PBG . We show that the approach of
W to its 2D thermodynamic limit ad., increases is quite rapid; for moderate valuesgoind L,=4,
WI(A,(Ly=2)XL,,q) is within about 5% andd(1073) of the 2D valueW(A, (Ly=) X (L,==),q) for
FBC, and PBG, respectively. The approach @ to the 2D thermodynamic limit is proved to be monotonic
(nonmonotonigfor FBC, (PBG). Itis noted that ground state entropy determinations on infinite strips can be
used to obtain the central charge for cases with critical ground sf&#863-651X98)09110-7

PACS numbg(s): 05.20-y, 64.60.Cn, 75.10.Hk

I. INTRODUCTION way to investigataN(A,q) for 2D lattices, namely, to cal-
culate exactlyW on such infinitely long strips of progres-
Nonzero ground state entrop,# 0, is an important sub-  sively greater widths. Thes#/ functions for infinitely long
ject in statistical mechanics. One physical example is prostrips have interesting analytic structure in their own right,
vided by ice, for which the residual molar entropy 8§  which was investigated in detail in R25]. Here we shall
=0.82£0.05 cal(K mole), i.e., So/R=0.41+0.03, where yse them for a different purpose: to investigate how rapidly
R=Navogks [1,2]. This is equivalent to a ground state degen-the 2D thermodynamic limit is approached as the width of
eracy per sit&V>1, sinceSy= kgIn W. Such nonzero ground  the strips increases. We find that this approach is quite rapid.
state entropy violates the third law of thermodynami®se,  of course, to demonstrate this does not require the use of
ﬁgt [3,4]. Theq-statg- Pto'E[ts antt|ferr§irr:1agtnf(AF3 [?36] <fex- exact analytic results; it can be seen equivalently from nu-
ibits nonzero ground state entropyithout frustration for sl Monte Carlo measurements on rectangulgr Ly

sufficiently largeq on a given lattice\ and serves asa usgful patches after an extrapolation 1o,=. Indeed, Monte
model for the study of this phenomenon. There is an inters

. . ) . Carlo measurements would be the standard method for this
esting connection with graph theory here, since the zero-

- . . purpose since they are not limited, as the exact analytic cal-
temperature partition function of the above—mentlonedCulations are. to a rather small rangelafvalues. However
g-state Potts antiferromagnet on a grapgh satisfies ' gely ‘ '

Z(G,q, T=0)pae= P(G,q), whereP(G,q) is the chromatic the value of discussing this with exact results is that the
poly,no,mial expressing’ th’e number o,f ways of coloring thereader can verify the conclusions directly rather than having

vertices of the grapl& with q colors such that no two adja- (© réproduce them with another Monte Carlo study.

cent vertices have the same col@l. Thus, The organization of the paper is as follows. In Sec. Il we
discuss some generalities of our approach. In Sec. Il we
W([ lim GJ,9)=lim P(G,q)'", (1.1)  prove that if one uses fref@eriodig boundary conditions in
n—oo n—o they direction transverse to the length of the infinite strip,

then W approaches its 2D thermodynamic limit monotoni-
cally (nonmonotonically. Section IV contains the numerical
results for strips of the square, triangular, and honeycomb
lattices with free transverse boundary conditions, while Sec.
V contains analogous results for periodic transverse bound-
ary conditions. In Sec. VI we remark on how these strip
orous upper and lower bounfts5,12-14, and Monte Carlo gy gies can be used to determine the central charge for cases

simulations(see, e.g.;16—-18). It is also worthwhile to gen-  yith critical ground states. Our conclusions are presented in
eralizeq from Z, to C and studyW({G},q) in the complex ggc. v

g plane for infiniten limits of various families of graphs,
{G} [19-26. On the positive real axia¥/({G},q) is an ana-
lytic function down to a point that we denotg({G}) [22].
Since it is possible to obtain exact analytic solutions for
infinitely long strips of 2D lattice$25], one has an alternate

wheren=uv(G) is the number of vertices d&. Nontrivial
exact solutions for this function are known in only a very
few cases, all for 2D lattices: the square latticeder 3 [8],
triangular lattice and, fog=3, the kagomédattice [9]. Of
course, one can use largeseries expansiord0-14, rig-

II. W ON STRIP GRAPHS AND APPROACH
TO 2D THERMODYNAMIC LIMIT

The usual thermodynamic limit of the Potts antiferromag-
net or other statistical mechanical model on the 2D lattice
*Electronic address: shrock@insti.physics.sunysb.edu involves takingL,— and L,— with fixed L,/L,=p,
"Electronic address: tsai@insti.physics.sunysb.edu where (p#0,2). The question of how various thermody-
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namic quantities approach their 2D limits as a functiorp of A. Monotonic approach for FBC,

has been of interest for many yeaesg., Ref.[27] for the We begin with the case of free boundary conditions and
Ising mode]. As noted in the Introduction, a different way to ?tate the following theorem:

approach the 2D thermodynamic limit is via a sequence of thaqremi: Let Aq_1,, denote a regular lattice graph of

infinitely long strips of progressively greater and greater. .. . . : . . .
widths. That this is different is clear from the fact that for !nf|n|te extgnt |nd_— 1 dimensions and W'dm.h.'Ckn?S$ L
each such strip, regardless of how largg is, the ratio in thedth dimension. Let the boundary conditions in tté

L, /Ly=0. We picture the strip graphs as extending Iongi,[u_direction be free and the boundary conditions in each of the

dinally in the horizontal X) direction and having a width of first d:l be (separately f_ree or periodic. (No_te that
L, vertices in the vertical directiorA priori, it is not clear Ag-1:=Ag_1 and Ag_;.=Aq.) Then for fixed g
that this different approach will yield results that are useful” 9c(Ad), W(Aq-1y,0) is a monotonically decreasing
to the study of the 2D thermodynamic limit, because, for afunction of L4 for 1<Ly<.
given thermodynamic quantity of interest, these results might Proof: We shall prove the theorem for the cabe 2; its
be dominated by the fundamenta”y 1D nature of the inﬁnitegeneralization tal=3 will be obvious. We consider a finite
strip. Indeed, to illustrate a case where it is not useful, constrip graph of the lattice, of size, XL, where the longitu-
sider a model, such as a discrete ferromagnet, which hasdinal direction isx. Assume that one has made an allowed
second-order phase transition at some critical temperatur@oloring of this graph. Now connect another layer of sites to
T.(A) on a 2D latticeA, and assume that there is no exactthe layer that formerly constituted the top layer of sites on
solution of this model. If one were to try to employ exact the strip. The coloring of this new layer of sites imposes
solutions of the model on infinitely long strips of lattice type additional constraints on the coloring of the original strip,
A to determineT.(A) for the 2D lattice, one would get the and excludes a certain subset of what were previously al-
1D resultT.=0 for any finite value ot.,. Hence, forT (A ) lowed colorings. Thus, the fraction of sites on the augmented
this method would not give any useful information. How- graph that have more constraints increases; i.e., the sites on
ever, as we shall show, the situation is very different with thethe upper and lower edges, which have fewer constraints on
ground state entrop$,(A); for this quantity, one can use their coloring because of the free transverse boundary con-
results on infinite strips to get quite accurate values even foflitions, constitute a progressively smaller fraction of the total
rather modest strip widths. number of sites ak, increases. Hence, the chromatic poly-
The existence of the thermodynamic limit for the 2D lat- nomial per site,P(A,[L,XL,],q)*", decreases. This in-
tice A means that the maximal finite remwhereW(A ,q) is ~ equality holds for arbitraryt, . Taking the limit asL,—
nonana|ytic,qC(A), is independent of the boundary condi- and using the definitiofil.1), one obtains the theorem for the
tions used in taking the 2D thermodynamic lif@2]. Let us ~ cased=2. A straightforward generalization of this argument
denote thew function for theL, XL, strip of the lattice of ~proves the theorem fat=3. _
type A asW(A (LyXL,),BC,BC,,q). We observe here that A_ C(_)r(_)IIary (_)f this theorem is that if one cqmpar\sas(_)n
for physical (positive integral g>qg(A), in the limit L, two infinite lattices of the same type and of different dimen-
— o0, this W function is independent of the boundary condi- Sions, such ad-dimensional Cartesian lattices then, for fixed
tions used in thex direction. This is also true for reaj  d>dc(A),
>q.(A) (and more generally, in the region of the comptex

plane denoted; in our previous studief22]). We thus in- W(A4,q9)<W(Agy ,q) if d>d'. (3.1
troduce a more compact notation for tAéfunction on infi-
nitely long strips: To prove this corollary, one starts witth =d—1 and (i)
constructsA 4 from A 4_; by imposing free boundary condi-
W(A(L,),BCy,q)= lim W(A(L,XL,),BC,,BC,,q). tions in thedth direction and adding layers of vertices in this
Ly— dth direction,(ii) uses the monotonicity relation of theorem 1

(2. for the quantitiesN(A 41, ,q), andiii) takes the number

Indeed, let Ay be an infinite d-dimensional lattice and of added_la_lyers in_thdth direc_tio_n_to i”fif‘“y to gethg. Th?

Ay., be aslab of aq—1)-dimensional lattice, infinite in monotonicity relation for the mﬁmtg Iatt|ce(§.1) was previ-
d=1lg ) o . . ) ously noted by Chow and W4]. It is important to observe

d_—l dlmensm_ns and of finite thicknekg in thedth dlme_n- that the monotonicity relation3.1) does not imply our

sion. For physical>qc(Ag), the value oW(Aq-1. ,0) IS monotonicity theorem 1. This is clear from the fact that the

independent of the boundary conditions used for tde ( inequality (3.1) holds independent of the boundary condi-

—1) directions when takingj—« for 1<sj<d—1. As we tions that one uses to define the respective thermodynamic

have discussed befol@2], this is not true for allqeC; limits on Ay and A4_,, whereas, on the contrary, the in-
however, here we deal only with physiaalvalues. equality in our theorem 1 does not apply if one uses periodic
boundary conditions for thedth direction of the
IIl. ISSUE OF MONOTONICITY OF APPROACH (d_ 1)'dimen5i0nal Strip or slab of Wldthd (See belOV)/.

TO 2D THERMODYNAMIC LIMIT

In this section we show that for fre@eriodid boundary B. Nonmonotonic approach for PBG

conditions in they direction, W for infinitely long strips of Next, we show that a similar monotonicity result does not
width L, approaches its 2D thermodynamic limit monotoni- hold if one imposes periodic boundary conditions in ttie
cally (nonmonotonically asL,— . direction. This is clear from the proof, since the greater free-
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dom in coloring the sites on the boundary layer in thh
dimension played a crucial role, but if one imposes periodic 24}
boundary conditions in théth direction, there is no such

boundary layer. The simplest illustration is provided by the
cased=1, for which[22] g.(A;)=2 and 22 ¢ @)

N

3L

W(A1,9)=g-1. B2 & |

o 20 / ~——

For free boundary conditions, the function that enters on the

right-hand side of Eq(1.1) is VA
1.8 |

P((Ay)n,FBC)"=g""(q—1)*"*". (3.3 el
For fixed g=q.(A,), this is a monotonically decreasing 161
function of n asn increases from 1 to infinity. However, if 15 . . . . ‘ ‘
we impose periodic boundary conditions, i.e., deal with an % 4° %0 &0 7O 8090 100
n-vertex circuit graphC,, then, the function that enters on
the right-hand side of Eq1.1) is FIG. 1. Plots of(a) Eqg. (3.3 and (b) Eqg. (3.4 for q=3, as

functions of realn, together with physical values for integar

P(Ay),,PBCO)Y"=(q—1)[1+(—1)"(q—1) ("Dt Horizontal line is the asymptot&V/(A,,q=3)=2.

3.4

54 comb (ho) lattices. For the strip graph of each tyf3g, we
[Parenthetically, we note th&x, is only a(proped graph for  define the ratio
n=3 since the strict mathematical definition of a graph for-
bids (i) any multiple bond connecting a given pair of vertices W(A(L,),BCy,q)
(present forC,,_,) and(ii) any bond going out from a given Rw(A(Ly),BCy,q)= W(A,q)
vertex and looping back to the same vertgresent for
Cn=1). This is not important for our demonstration of non- |n the Appendix we list the exact analytic expressions for
monotonicity] This is a nonmonotonic function af. For W(A(L,),FBC,,q) for A=sq,tr,hc and thé., values used
example, for the lowest value af where the 1D Potts AF here. In Table | we show a numerical comparison for strips
has nonzero ground state entropy, vig= 3, for which the  of the square latticéalong the row directionfor 1< L,<4
n—oe limit is W(A;,q=3)=2, Eq.(3.4) exhibits the non- and 3<g=<10. The exact value W(sqq=23)
monotonic behavior indicated by the value¥®61.817--  =(4/3)32=1.53960-- is from Ref.[8], while the values of
for n=3, (18)/=2.060-- for n=4, (30)**=1.974-- for  W(sqq) for 4<q=<10 are from our Monte Carlo measure-
n=5, (66)/°=2.010-- for n=86, etc. Similar nonmonotonic ments in Ref[22]. Using the conservatively quoted uncer-
behavior occurs for higher values gf Looking at subse- tainties that we gave for the Monte Carlo measurements, it
quences, we find tha&((A ), ,PBCg)*" is a monotonically  would follow that the corresponding uncertainties in the ra-
increasing function of for odd n=3 and a monotonically tios (4.1) are ~(3—4)x 10 4 with less conservative esti-
decreasing function of for evenn=2. This is connected mates of uncertainties in the Monte Carlo measurements, the
with the fact that the circuit graph(A,),,PBC|=C,, with resultant uncertainties in these ratios would be smaller. In
odd (even n has chromatic numbey=3 (y=2). The dif- Tables Il and lll we give the analogous comparisons for
ferent behaviors of  P((Ay),, FBC)" and  strips of the triangular lattice of widths,=2,3,4 and of the
P((A1)n,PBC)Y" can be seen in a more general contexthoneycomb lattice for width&,=2 and 3. In all of these
by analytically continuing Eq93.3 and(3.4) fromne 7, cases, one observes that, for fixgdthe agreement with the
tone R, and plotting them as functions of[in the second infinite-lattice value gets better as the width increases, in
case, sinceP(C,,q)=(q—1)"+(—1)"(q—1) is complex accordance with our Theorem 1 above. These comparisons
for neZ, we plot |P(C,,q)|]. This is shown in Fig. 1. show that the approach to the 2D thermodynamic limit is
One notices that although E@3.4) for periodic boundary reasonably rapid even for free boundary conditions in the
conditions behaves nonmonotonically, it approachesnthe transverse direction. For example, for @x 4 strip of the
=oo valueW(A,q=3)=2 considerably more rapidly than square lattice for &q=<5, theW values are within about 5%
the FBC expression, E@3.3). As one increaseg beyond 3, of their respective values for the infinite 2D lattice.
the first maximum inP(C,,q)|*" moves slightly leftward,
and the oscillations damp out faster. As we shall show in they,, QUANTITATIVE RESULTS FOR STRIPS WITH PBC

tables below, a similar difference holds between the behavior o o
of W(A(L,),BC,,q) for FBC, and PBG. In Tables IV and V we present similar results for infinite

strips with periodic boundary conditions in the transvesge (

direction. The exact analytic expressions that we use for

these tables are given in the Appendix. As mentioned in the
One would like to go beyond the general inequality in Appendix, for a strip of the square lattice with PB@nd

Theorem 1 to obtain an explicit numerical determination ofcross sections forming triangles, depending on one’s label-

the dependence & onL4. We do this here fod=2 and, ling conventions, this correspondsltg=3 or L, =4, where

in particular, for the squarésg), triangular(tr), and honey- in the latter case one interprets the periodic boundary condi-

4.0

IV. QUANTITATIVE RESULTS FOR STRIPS WITH FBC
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TABLE |. Comparison of values oiV(sq(L,),FBC,,q) with W(sqq) for 3<q=10. For each value of
g, the quantities in the upper line are identified at the top and the quantities in the lower line are the values
of Ry(sq(L,),FBC,,q). The FBG is symbolized as in the table.

g W(sq(l)F.a) W(sq(2)F.q) W(sq(3)F.a) W(sq(4)F,a) W(sqq) W(sqQ)ser W(sqq),

3 2 1.73205 1.65846 1.624945 1.53960 1.53960-- 1.50000
1.299 1.125 1.077 1.055 1 1

4 3 2.64575 2.53800 2.48590 2.3370 2.3361 2.33333
1.284 1.132 1.086 1.064 1

5 4 3.60555 3.48304 3.42336 3.2510 3.2504 3.25000
1.230 1.109 1.071 1.053 1

6 5 4.58258 4.14082 4.21082 4.2003 4.2001 4.20000
1.190 1.091 1.060 1.0445 1

7 6 5.56776 5.11723 5.17377 5.1669 5.1667 5.16667
1.161 1.078 1.051 1.038 1

8 7 6.55744 6.10017 6.14792 6.1420) 6.1429 6.14286
1.1395 1.067 1.0445 1.033 1

9 8 7.54983 7.08734 7.12881 7.1223) 7.1250 7.12500
1.123 1.060 1.039 1.029 1

10 9 8.54400 8.07737 8.11409 8.1129 8.1111 8.11111
1.109 1.053 1.035 1.026 1

tions as identifying the top and bottom vertices for eachmodynamic limit is already fully demonstrated by the range
value ofx. A similar comment applies for a strip with PBC  of L, that we have considered.

and transverse cross sections forming squares. For the table,
we use the convention of choosing the smaller of the respec-
tive values ofL, . We find that for a giver, W approaches

its 2D valueW(A,q) much more rapidly with periodic rather For certain 2D latticed and values 0§, theq-state Potts
than free transverse boundary conditions: for the modesntiferromagnet has a critical ground state, i.e.TasO0, a
width Ly =4, W is within 0O(103) of its 2D value for mod-  correlation length¢ defined, say, by a spin-spin correlation
erateq. The finding that the periodic boundary conditions in function, goes to infinity. Normally, in statistical mechanics,
the transverse direction yield a more rapid approach to théor a given dimensionalityd and symmetry groupG,

2D thermodynamic limit than the free boundary conditions issecond-order phase transitions can be described by a univer-
not, in itself, a surprise; this is in accord with a wealth of pastsality class representing a fixed point of the renormalization
experience with statistical mechanical models on finite-sizggroup. Conformal field theory methods have provided a pow-
lattices. What is remarkable is how rapid in absolute term®rful way to understand these universality classes and the
this approach is. Of course, one can also consider larger vahssociated critical exponents in terms of Virasoro algebras
ues ofL, but the strikingly rapid approach to the 2D ther- with given central charges and scaling dimensif2&-30.

VI. CASES WITH CRITICAL GROUND STATES

TABLE Il. Comparison of values diV(tr(L,),FBC,,q) with W(tr,q) for 4<q=<10. For each value df,
the quantities in the upper line are identified at the top and the quantities in the lower line are the values of
Rwl(tr(L,),FBC,,q). The FBG is symbolized as in the table.

q WA(tr(2),F,a) W(tr(3),F,a) W(tr(4),F.q) W(tr,q) W(tr,q)
4 2 1.77173 1.67619 1.46100 1.333333
1.369 1.213 1.147 1
5 3 2.72998 2.60495 2.26411 2.250000
1.325 1.206 1.151 1
6 4 3.71457 3.579715 3.20388 3.200000
1.248 1.159 1.117 1
7 5 4.70571 4.56515 4.16819 4.166667
1.200 1.129 1.095 1
8 6 5.69974 5.55530 5.14358 5.142857
1.167 1.108 1.080 1
9 7 6.695395 6.54810 6.12539 6.125000
1.143 1.093 1.069 1
10 8 7.69208 7.54259 7.11134 7.111111

1.125 1.082 1.061 1
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TABLE Ill. Comparison of values o(hc(L,),FBC, ,q) with W(hc,q) for 3=q=10. For each value of
g, the quantities in the upper line are identified at the top and the quantities in the lower line are the values
of Ry(hc(L,),FBC,,q). The FBG is symbolized as in the table.

q W(hc(2) F,q) W(hc(3) F,q) W(hc,q) W(he,0) ser W(hc,q),
3 1.82116 1.76567 1.66(8) 1.6600 1.658312
1.097 1.064 1
4 2.79468 2.72942 2.6088 2.6034 2.603417
1.073 1.048 1
5 3.78389 3.71448 3.57¢8)) 3.5795 3.579455
1.057 1.038 1
6 4.77760 4.70568 4.56616) 4.5651 4.565085
1.046 1.031 1
7 5.77336 5.69973 5.55667) 5.5553 5.555278
1.039 1.026 1
8 6.77028 6.69539 6.54720) 6.5481 6.548095
1.034 1.023 1
9 7.76793 7.69208 7.54p20) 7.5426 7.542587
1.030 1.020 1
10 8.76607 8.68945 8.5368) 8.5382 8.538222
1.027 1.018 1

In addition to phase transitions involving ferromagnetic longlated to the fact that thg=3 Potts antiferromagnet on the
range order at low temperatures, this is also true of antiferkagomelattice is critical atT=0 [29]. We recall that given
romagnetic transitions on bipartite lattices, but the situatiorthe Virasoro algebra with central extension
is more complicated on nonbipartite lattices, as is illustrated
by the fact that the isotropic Ising antiferromagnet on the c
triangular lattice has no finite-temperature phase transition [Lym,Lol=(m=n)Lyynt 1—2m(m2—1)5m+n‘0 6.1
but is critical atT=0.

Theq= 3 Potts antiferromagnet on the square lattice has a
critical ground state with central charge=1, as a conse- and the corresponding Kac-Moody algebra realized at llevel
guence of the fact that 8t=0 this model can be mapped to
a critical six-vertex mode[8]. From the exact solution in a qb7_ ~abcqc 1 b
Ref.[9], it can be argued that the=4 Potts antiferromagnet [3m:9n]= €™ 2KNG™ om0 €2

on the triangular lattice is also critical, which is closely re- .
with structure constants,,,¢, as connected via the Sugawara

TABLE IV. Comparison of values ofV(sq(L,),PBG,,q) with relation (e.g.,[28])
W(sq,q) for 3=<g=<10. For each value o, the quantities in the
upper line are identified at the top and the quantities in the lower TABLE V. Comparison of values oWV(tr(L,),PBG,,q) with
line are the values oRy(sq(L,),PBC,,q). The PBG is symbol-  w(tr,q) for 4<q=<10. For each value of], the quantities in the

ized asP in the table. upper line are identified at the top and the quantities in the lower
line are the values dRy(tr(L,),PBG,,q). The PBG is symbolized
q W(sq(3) P.a) W(sq(4)P,a) W(sq,P,q) asP in the table.
3 1.25992 1.58882 1.53960
0.8183 1.032 1 q W(tr(3),P,q) W(tr(4),P.q) W(tr,q)
4 2.22398 2.37276 2.337D 4 1.58740 1.18921 1.46100
0.9516 1.015 1 1.0865 0.8140 1
5 3.17480 3.26878 3.25(10) 5 2.35133 2.21336 2.26411
0.9766 1.0055 1 1.0385 0.9776 1
6 4.14082 4.21082 4.2008) 6 3.23961 3.185055 3.20388
0.9858 1.002505 1 1.0112 0.9941 1
7 5.11723 5.17377 5.166B5) 7 4.17934 4.15965 4.16819
0.9904 1.0013 1 1.0027 0.99795 1
8 6.10017 6.14792 6.14%20) 8 5.14256 5.13936 5.14358
0.9930 1.0008 1 0.99980 0.9992 1
9 7.08734 7.12881 7.12620) 9 6.11803 6.12324 6.12539
0.9947 1.0005 1 0.99880 0.99965 1
10 8.07737 8.11409 8.1125) 10 7.10059 7.11027 7.11134

0.9957 1.0002 1 0.99849 0.99985 1
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o0

1 . thatSg,+= 0 In this case, and dropping terms of ordig:;r3 in
Ly=— >, 333 (6.3 Eq.(6.8), we obtain the estimate=0.96, quite close to the
Co(g)tk mT=
exact valuec=1.

it follows that
VIlI. CONCLUSIONS

dim
c= —(g) (6.4 In summary, we have studied a different type of approach

Ca(g)/k+1 to the 2D thermodynamic limit for the ground state entropy,
or equivalently, the ground state degeneracy per ¥teof
the g-state Potts antiferromagnet, using infinitely long strips
of increasing widths. We have found that the approactof
g=SuUM),_;=c=M—1. (6.5 o its 2D thermodynamic limit is quite rapid; for moderate
values ofq and widthsL =4, W(A,_y,q) is within about 5%
Hence, from Eq(6.5 together with the finding29] that the  andO(10™3) of the 2D value for free and periodic boundary
Kac-Moody algebra is su(g), for theT=0 g=3 Potts AF  conditions, respectively. We have also proved that the ap-
on the kagomdattice, it follows thatc=2 for this critical  proach ofW to the 2D thermodynamic limit is monotonic
ground state. Given that there is a close connection betweghonmonotonig for free (periodig boundary conditions in
the Potts antiferromagnets with=3 on the kagomdattice  the transverse direction. Finally, we have noted that these
and withg=4 on the triangular lattice, which leads to the ground state entropy determinations on infinite strips can be
relationW(kag,q=3)=W(tri,q=4)3[9], this suggests that used to obtain the central charge for cases with critical
this value ofc=2 also holds for th8 =0, q=4 Potts AF on  ground states.
the triangular lattice.

whereC,(qg) is the quadratic Casimir operator for the alge-
brag. In particular,
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¢ APPENDIX
rf _
fstipr, = Fount %JF F+O(Ly %), (6.6) We gather together here the exact analytic formulas on
y y which our numerical tables are based. It should be empha-

sized that the entries in these tables and the resultant conclu-
sions about the rapidity of the approach \Wf to the 2D
thermodynamic limit for infinitely long strips with free or
periodic transverse boundary conditions could also have
c for PBC been obtained using purely numerical Monte Carlo calcula-
A= (6.7) tions. The usefulness _of_ the analytic formulashich are

K for FB elementary fol.,=1,2) is just that they enable one to check

54° G- the results more directly.

where f,; is nonzero(zerg for free (periodio boundary
conditions in they direction and

ol 3

For the critical ground states of interest here, wig=3,4,3 1. Square lattice, FBG,
on the square, triangular, and kagofagices, respectively, . . . .
as well as other possible 2D cases, the Potts antiferromagnet For infinitely long strips of the square lattice with FRC

exhibits ground state entropy without frustration, and the reWVe have

d_uced free energyper site¢ f=Ilimy_... N"1InZ is given . W(sqL,=1),FBC,,q)=q—1, (A1)
simply by the ground state entropy:
f(A,9)par=So(A,0)par/ ks, Hence, Eq(6.6) becomes W(sc(Ly:2),FBCy,q)=(q2—3q+3)1’2, (A2)
SsrpL, = Shuict Sf—yf i %+O<L;3>. 6.8  W(sAL,=3),FBC,0)=2""(q-2)(g’~3q+5)
’ +[(9?~5q+7)(q*~5q°+ 1192
Thus, calculations oSsmp,Ly for several different values of _12q+8)]1318 (A3)

Ly can yieldc. Normally, one would do this via the most

general and robust method, namely, Monte Carlo simulaw(sq(Ly:4),|:qu,q) is given by the maximal root of the
tions. For smalL values, we have shown that it is actually cypic equation

possible to get exact analytic results, but this method is not

competitive with Monte Carlo simulations for strips with E+ bsq4),1§2+ Dsqa) 26+ Dsg4)3=0, (A4)
larger values oL, . One might note in passing that for the

q=3 Potts AF on the infinite square strip with PB@nd  where the coefficientdgq4)x, k=1,2,3 were listed in
cross sections forming squares, taking=4, using the fact Ref.[25].
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2. Triangular lattice, FBC, L,=4, where in the latter case, one interprets the periodic
boundary conditions as identifying the top and bottom verti-

For the triangular lattice strips with FBC we have
9 P BC ces for each value of. We calculate

Witr(L,=2),FBG . @)=a-2, (A5 W(sqL,=3),PBG, ,q)= (q°—6q2+ 14q— 131

(A10)

W(tr(L,=3),FBC,,q)=2"3{(g*-79?+ 189—17)

6 5 4 3 For the next larger size, i.e., transverse cross sections form-
+[0°—149°+81q9" - 250y ing squares, correspondingltg=4 orL,=5 in the respec-
+44202— 4369+ 193] Y2183, tive labelling conventions described above, Wdunction is

given by[25]

B o . W(sqL,=4),PBC,,q)
W(tr(L,=4),FBC],q) is given by the maximal root of the
quartic equation =2"Y4(g*—80%+2992— 559+ 46)
+[q®—16q"+ 11894°—5260°+ 1569 — 32509°
+46179% 41361+ 1776314, (A11)

(AB)

E Dyg(a) 183+ Bir(a) 267+ Dyr(a) 2+ B4y 4=0, (A7)
where theby4) x, kK=1,...,4 were listed in Ref25].

. 5. Triangular lattice, PBC,
3. Honeycomb lattice, FBG

We next consider a strip of the triangular lattice with
PBC,, represented as a square lattice with additional diago-
. 4 3 2 1a nal bonds from, say, the upper left to lower right vertices of
W(ha(Ly=2),FBC,,q)=(q"—59°+10q°—10q+5) Ag)  €ach square. For the case where the transverse cross sections
(A8) form triangles, corresponding tb,=3 or L,=4 in the

W(hc(L,=3),FBG,,q) is given by the maximal root of the above labelling conventions, we calculate
cubic equation

For the honeycomb lattice strips with FBCwe have

W(tr(Ly=3),PBG,,q)=(q°~ 99+ 29— 32)'~.
E34 bpg3) 162+ by 3) 26+ bry3) 3=0, (A9) (A12)
For the next larger size, with transverse cross sections form-

where thebycs)x, k=1,2,3 were listed i25]. ing squaresy is [25]

4. Square lattice, PBG W(tr(L,=4),FBC],q)
We first consider a strip of the square lattice with EBC =2~ V4 q_ 314 (3— 9q2+ 339 — 48) + (q— 4
and transverse cross sections forming triangles. Depending (@-3)™(q q 4 ) (A=)
on one’s labelling conventions, this corresponds je- 3 or X [q*— 1093+ 4302 — 1069+ 129]Y2 14, (A13)
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