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Ground state entropy of Potts antiferromagnets and the approach
to the two-dimensional thermodynamic limit

Robert Shrock* and Shan-Ho Tsai†

Institute for Theoretical Physics, State University of New York at Stony Brook, Stony Brook, New York 11794-3840
~Received 1 May 1998!

We study the ground state degeneracy per site~exponent of the ground state entropy! W„L,(Lx5`)
3Ly ,q… for theq-state Potts antiferromagnet on infinitely long strips with widthLy of 2D latticesL with free
and periodic boundary conditions in they direction, denoted FBCy and PBCy . We show that the approach of
W to its 2D thermodynamic limit asLy increases is quite rapid; for moderate values ofq and Ly.4,
W„L,(Lx5`)3Ly ,q… is within about 5% andO(1023) of the 2D valueW„L,(Lx5`)3(Ly5`),q… for
FBCy and PBCy , respectively. The approach ofW to the 2D thermodynamic limit is proved to be monotonic
~nonmonotonic! for FBCy (PBCy). It is noted that ground state entropy determinations on infinite strips can be
used to obtain the central charge for cases with critical ground states.@S1063-651X~98!09110-7#

PACS number~s!: 05.20.2y, 64.60.Cn, 75.10.Hk
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I. INTRODUCTION

Nonzero ground state entropy,S0Þ0, is an important sub-
ject in statistical mechanics. One physical example is p
vided by ice, for which the residual molar entropy isS0
50.8260.05 cal/~K mole!, i.e., S0 /R50.4160.03, where
R5NAvogkB @1,2#. This is equivalent to a ground state dege
eracy per siteW.1, sinceS05kBln W. Such nonzero ground
state entropy violates the third law of thermodynamics~see,
e.g.,@3,4#!. Theq-state Potts antiferromagnet~AF! @5,6# ex-
hibits nonzero ground state entropy~without frustration! for
sufficiently largeq on a given latticeL and serves as a usefu
model for the study of this phenomenon. There is an in
esting connection with graph theory here, since the ze
temperature partition function of the above-mention
q-state Potts antiferromagnet on a graphG satisfies
Z(G,q,T50)PAF5P(G,q), whereP(G,q) is the chromatic
polynomial expressing the number of ways of coloring t
vertices of the graphG with q colors such that no two adja
cent vertices have the same color@7#. Thus,

W~@ lim
n→`

G#,q!5 lim
n→`

P~G,q!1/n, ~1.1!

wheren5v(G) is the number of vertices ofG. Nontrivial
exact solutions for this function are known in only a ve
few cases, all for 2D lattices: the square lattice forq53 @8#,
triangular lattice and, forq53, the kagome´ lattice @9#. Of
course, one can use large-q series expansions@10–14#, rig-
orous upper and lower bounds@15,12–14#, and Monte Carlo
simulations~see, e.g.,@16–18#!. It is also worthwhile to gen-
eralizeq from Z1 to C and studyW($G%,q) in the complex
q plane for infinite-n limits of various families of graphs
$G% @19–26#. On the positive real axis,W($G%,q) is an ana-
lytic function down to a point that we denoteqc($G%) @22#.

Since it is possible to obtain exact analytic solutions
infinitely long strips of 2D lattices@25#, one has an alternat
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way to investigateW(L,q) for 2D lattices, namely, to cal-
culate exactlyW on such infinitely long strips of progres
sively greater widths. TheseW functions for infinitely long
strips have interesting analytic structure in their own rig
which was investigated in detail in Ref.@25#. Here we shall
use them for a different purpose: to investigate how rapi
the 2D thermodynamic limit is approached as the width
the strips increases. We find that this approach is quite ra
Of course, to demonstrate this does not require the us
exact analytic results; it can be seen equivalently from
merical Monte Carlo measurements on rectangularLx3Ly

patches after an extrapolation toLx5`. Indeed, Monte
Carlo measurements would be the standard method for
purpose since they are not limited, as the exact analytic
culations are, to a rather small range ofLy values. However,
the value of discussing this with exact results is that
reader can verify the conclusions directly rather than hav
to reproduce them with another Monte Carlo study.

The organization of the paper is as follows. In Sec. II w
discuss some generalities of our approach. In Sec. III
prove that if one uses free~periodic! boundary conditions in
the y direction transverse to the length of the infinite str
then W approaches its 2D thermodynamic limit monoton
cally ~nonmonotonically!. Section IV contains the numerica
results for strips of the square, triangular, and honeyco
lattices with free transverse boundary conditions, while S
V contains analogous results for periodic transverse bou
ary conditions. In Sec. VI we remark on how these st
studies can be used to determine the central charge for c
with critical ground states. Our conclusions are presente
Sec. VII.

II. W ON STRIP GRAPHS AND APPROACH
TO 2D THERMODYNAMIC LIMIT

The usual thermodynamic limit of the Potts antiferroma
net or other statistical mechanical model on the 2D latticeL
involves takingLx→` and Ly→` with fixed Ly /Lx5r,
where (rÞ0,̀ ). The question of how various thermody
4332 © 1998 The American Physical Society
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namic quantities approach their 2D limits as a function or
has been of interest for many years~e.g., Ref.@27# for the
Ising model!. As noted in the Introduction, a different way t
approach the 2D thermodynamic limit is via a sequence
infinitely long strips of progressively greater and grea
widths. That this is different is clear from the fact that f
each such strip, regardless of how largeLy is, the ratio
Ly /Lx50. We picture the strip graphs as extending longi
dinally in the horizontal (x) direction and having a width o
Ly vertices in the vertical direction.A priori, it is not clear
that this different approach will yield results that are use
to the study of the 2D thermodynamic limit, because, fo
given thermodynamic quantity of interest, these results m
be dominated by the fundamentally 1D nature of the infin
strip. Indeed, to illustrate a case where it is not useful, c
sider a model, such as a discrete ferromagnet, which h
second-order phase transition at some critical tempera
Tc(L) on a 2D latticeL, and assume that there is no exa
solution of this model. If one were to try to employ exa
solutions of the model on infinitely long strips of lattice typ
L to determineTc(L) for the 2D lattice, one would get th
1D resultTc50 for any finite value ofLy . Hence, forTc(L)
this method would not give any useful information. How
ever, as we shall show, the situation is very different with
ground state entropyS0(L); for this quantity, one can us
results on infinite strips to get quite accurate values even
rather modest strip widths.

The existence of the thermodynamic limit for the 2D la
tice L means that the maximal finite realq whereW(L,q) is
nonanalytic,qc(L), is independent of the boundary cond
tions used in taking the 2D thermodynamic limit@22#. Let us
denote theW function for theLx3Ly strip of the lattice of
typeL asW„L(Lx3Ly),BCx ,BCy ,q…. We observe here tha
for physical ~positive integral! q.qc(L), in the limit Lx
→`, this W function is independent of the boundary cond
tions used in thex direction. This is also true for realq
.qc(L) ~and more generally, in the region of the complexq
plane denotedR1 in our previous studies@22#!. We thus in-
troduce a more compact notation for theW function on infi-
nitely long strips:

W„L~Ly!,BCy ,q…[ lim
Lx→`

W„L~Lx3Ly!,BCx ,BCy ,q….

~2.1!

Indeed, let Ld be an infinite d-dimensional lattice and
Ld21,Ld

be a slab of a (d21)-dimensional lattice, infinite in

d21 dimensions and of finite thicknessLd in thedth dimen-
sion. For physicalq.qc(Ld), the value ofW(Ld21,Ld

,q) is

independent of the boundary conditions used for thed
21) directions when takingL j→` for 1< j <d21. As we
have discussed before@22#, this is not true for allqPC;
however, here we deal only with physicalq values.

III. ISSUE OF MONOTONICITY OF APPROACH
TO 2D THERMODYNAMIC LIMIT

In this section we show that for free~periodic! boundary
conditions in they direction,W for infinitely long strips of
width Ly approaches its 2D thermodynamic limit monoton
cally ~nonmonotonically! asLy→`.
f
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A. Monotonic approach for FBCy

We begin with the case of free boundary conditions a
state the following theorem:

Theorem1: Let Ld21,Ld
denote a regular lattice graph o

infinite extent ind21 dimensions and width~thickness! Ld
in thedth dimension. Let the boundary conditions in thedth
direction be free and the boundary conditions in each of
first d21 be ~separately! free or periodic. ~Note that
Ld21,1[Ld21 and Ld21,̀ 5Ld .) Then for fixed q
.qc(Ld), W(Ld21,Ld

,q) is a monotonically decreasin

function of Ld for 1<Ld<`.
Proof: We shall prove the theorem for the cased52; its

generalization tod>3 will be obvious. We consider a finite
strip graph of the lattice, of sizeLx3Ly , where the longitu-
dinal direction isx. Assume that one has made an allow
coloring of this graph. Now connect another layer of sites
the layer that formerly constituted the top layer of sites
the strip. The coloring of this new layer of sites impos
additional constraints on the coloring of the original str
and excludes a certain subset of what were previously
lowed colorings. Thus, the fraction of sites on the augmen
graph that have more constraints increases; i.e., the site
the upper and lower edges, which have fewer constraints
their coloring because of the free transverse boundary c
ditions, constitute a progressively smaller fraction of the to
number of sites asLy increases. Hence, the chromatic pol
nomial per site,P(L,@Lx3Ly#,q)1/n, decreases. This in
equality holds for arbitraryLx . Taking the limit asLx→`
and using the definition~1.1!, one obtains the theorem for th
cased52. A straightforward generalization of this argume
proves the theorem ford>3.

A corollary of this theorem is that if one comparesW on
two infinite lattices of the same type and of different dime
sions, such asd-dimensional Cartesian lattices then, for fixe
q.qc(L),

W~Ld ,q!,W~Ld8 ,q! if d.d8. ~3.1!

To prove this corollary, one starts withd85d21 and ~i!
constructsLd from Ld21 by imposing free boundary condi
tions in thedth direction and adding layers of vertices in th
dth direction,~ii ! uses the monotonicity relation of theorem
for the quantitiesW(Ld21,Ld

,q), and ~iii ! takes the number

of added layers in thedth direction to infinity to getLd . The
monotonicity relation for the infinite lattices~3.1! was previ-
ously noted by Chow and Wu@4#. It is important to observe
that the monotonicity relation~3.1! does not imply our
monotonicity theorem 1. This is clear from the fact that t
inequality ~3.1! holds independent of the boundary cond
tions that one uses to define the respective thermodyna
limits on Ld and Ld21 , whereas, on the contrary, the in
equality in our theorem 1 does not apply if one uses perio
boundary conditions for the dth direction of the
(d21)-dimensional strip or slab of widthLd ~see below!.

B. Nonmonotonic approach for PBCy

Next, we show that a similar monotonicity result does n
hold if one imposes periodic boundary conditions in thedth
direction. This is clear from the proof, since the greater fr
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dom in coloring the sites on the boundary layer in thedth
dimension played a crucial role, but if one imposes perio
boundary conditions in thedth direction, there is no such
boundary layer. The simplest illustration is provided by t
cased51, for which @22# qc(L1)52 and

W~L1 ,q!5q21. ~3.2!

For free boundary conditions, the function that enters on
right-hand side of Eq.~1.1! is

P„~L1!n ,FBC,q…1/n5q1/n~q21!121/n. ~3.3!

For fixed q>qc(L1), this is a monotonically decreasin
function of n asn increases from 1 to infinity. However, i
we impose periodic boundary conditions, i.e., deal with
n-vertex circuit graphCn , then, the function that enters o
the right-hand side of Eq.~1.1! is

P„~L1!n ,PBC,q…1/n5~q21!@11~21!n~q21!2~n21!#1/n.
~3.4!

@Parenthetically, we note thatCn is only a~proper! graph for
n>3 since the strict mathematical definition of a graph f
bids~i! any multiple bond connecting a given pair of vertic
~present forCn52) and~ii ! any bond going out from a given
vertex and looping back to the same vertex~present for
Cn51). This is not important for our demonstration of no
monotonicity.# This is a nonmonotonic function ofn. For
example, for the lowest value ofq where the 1D Potts AF
has nonzero ground state entropy, viz.,q53, for which the
n→` limit is W(L1 ,q53)52, Eq. ~3.4! exhibits the non-
monotonic behavior indicated by the values 61/351.817̄
for n53, (18)1/452.060̄ for n54, (30)1/551.974̄ for
n55, (66)1/652.010̄ for n56, etc. Similar nonmonotonic
behavior occurs for higher values ofq. Looking at subse-
quences, we find thatP„(L1)n ,PBC,q…1/n is a monotonically
increasing function ofn for odd n>3 and a monotonically
decreasing function ofn for evenn>2. This is connected
with the fact that the circuit graph@(L1)n ,PBC#5Cn with
odd ~even! n has chromatic numberx53 (x52). The dif-
ferent behaviors of P„(L1)n ,FBC,q…1/n and
P„(L1)n ,PBC,q…1/n can be seen in a more general conte
by analytically continuing Eqs.~3.3! and ~3.4! from nPZ1

to nPR1 and plotting them as functions ofn @in the second
case, sinceP(Cn ,q)5(q21)n1(21)n(q21) is complex
for n¹Z, we plot uP(Cn ,q)u1/n#. This is shown in Fig. 1.
One notices that although Eq.~3.4! for periodic boundary
conditions behaves nonmonotonically, it approaches thn
5` valueW(L1 ,q53)52 considerably more rapidly tha
the FBC expression, Eq.~3.3!. As one increasesq beyond 3,
the first maximum inuP(Cn ,q)u1/n moves slightly leftward,
and the oscillations damp out faster. As we shall show in
tables below, a similar difference holds between the beha
of W„L(Ly),BCy ,q… for FBCy and PBCy .

IV. QUANTITATIVE RESULTS FOR STRIPS WITH FBC y

One would like to go beyond the general inequality
Theorem 1 to obtain an explicit numerical determination
the dependence ofW on Ld . We do this here ford52 and,
in particular, for the square~sq!, triangular~tr!, and honey-
c

e

n

-

t

e
or

f

comb ~hc! lattices. For the strip graph of each typeGs , we
define the ratio

RW„L~Ly!,BCy ,q…5
W„L~Ly!,BCy ,q…

W~L,q!
. ~4.1!

In the Appendix we list the exact analytic expressions
W„L(Ly),FBCy ,q… for L5sq,tr,hc and theLy values used
here. In Table I we show a numerical comparison for str
of the square lattice~along the row direction! for 1<Ly<4
and 3<q<10. The exact value W(sq,q53)
5(4/3)3/251.53960̄ is from Ref. @8#, while the values of
W(sq,q) for 4<q<10 are from our Monte Carlo measure
ments in Ref.@22#. Using the conservatively quoted unce
tainties that we gave for the Monte Carlo measurements
would follow that the corresponding uncertainties in the
tios ~4.1! are ;(324)31024; with less conservative esti
mates of uncertainties in the Monte Carlo measurements
resultant uncertainties in these ratios would be smaller
Tables II and III we give the analogous comparisons
strips of the triangular lattice of widthsLy52,3,4 and of the
honeycomb lattice for widthsLy52 and 3. In all of these
cases, one observes that, for fixedq, the agreement with the
infinite-lattice value gets better as the width increases,
accordance with our Theorem 1 above. These comparis
show that the approach to the 2D thermodynamic limit
reasonably rapid even for free boundary conditions in
transverse direction. For example, for an`34 strip of the
square lattice for 3<q<5, theW values are within about 5%
of their respective values for the infinite 2D lattice.

V. QUANTITATIVE RESULTS FOR STRIPS WITH PBC y

In Tables IV and V we present similar results for infini
strips with periodic boundary conditions in the transversey)
direction. The exact analytic expressions that we use
these tables are given in the Appendix. As mentioned in
Appendix, for a strip of the square lattice with PBCy and
cross sections forming triangles, depending on one’s la
ling conventions, this corresponds toLy53 or Ly54, where
in the latter case one interprets the periodic boundary co

FIG. 1. Plots of~a! Eq. ~3.3! and ~b! Eq. ~3.4! for q53, as
functions of realn, together with physical values for integern.
Horizontal line is the asymptote,W(L1 ,q53)52.
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TABLE I. Comparison of values ofW„sq(Ly),FBCy ,q… with W(sq,q) for 3<q<10. For each value of
q, the quantities in the upper line are identified at the top and the quantities in the lower line are the
of RW„sq(Ly),FBCy ,q…. The FBCy is symbolized asF in the table.

q W„sq(1),F,q… W„sq(2),F,q… W„sq(3),F,q… W„sq(4),F,q… W(sq,q) W(sq,q)ser W(sq,q) l

3 2 1.73205 1.65846 1.624945 1.53960••• 1.53960••• 1.50000
1.299 1.125 1.077 1.055 1 1

4 3 2.64575 2.53800 2.48590 2.3370~7! 2.3361 2.33333
1.284 1.132 1.086 1.064 1

5 4 3.60555 3.48304 3.42336 3.2510~10! 3.2504 3.25000
1.230 1.109 1.071 1.053 1

6 5 4.58258 4.14082 4.21082 4.2003~12! 4.2001 4.20000
1.190 1.091 1.060 1.0445 1

7 6 5.56776 5.11723 5.17377 5.1669~15! 5.1667 5.16667
1.161 1.078 1.051 1.038 1

8 7 6.55744 6.10017 6.14792 6.1431~20! 6.1429 6.14286
1.1395 1.067 1.0445 1.033 1

9 8 7.54983 7.08734 7.12881 7.1254~22! 7.1250 7.12500
1.123 1.060 1.039 1.029 1

10 9 8.54400 8.07737 8.11409 8.1122~25! 8.1111 8.11111
1.109 1.053 1.035 1.026 1
c
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e
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iver-
ion
w-
the
ras
tions as identifying the top and bottom vertices for ea
value ofx. A similar comment applies for a strip with PBCy
and transverse cross sections forming squares. For the t
we use the convention of choosing the smaller of the resp
tive values ofLy . We find that for a givenq, W approaches
its 2D valueW(L,q) much more rapidly with periodic rathe
than free transverse boundary conditions: for the mod
width Ly54, W is within O(1023) of its 2D value for mod-
erateq. The finding that the periodic boundary conditions
the transverse direction yield a more rapid approach to
2D thermodynamic limit than the free boundary conditions
not, in itself, a surprise; this is in accord with a wealth of p
experience with statistical mechanical models on finite-s
lattices. What is remarkable is how rapid in absolute ter
this approach is. Of course, one can also consider larger
ues ofLy , but the strikingly rapid approach to the 2D the
h

le,
c-

st

e
s
t
e
s
al-

modynamic limit is already fully demonstrated by the ran
of Ly that we have considered.

VI. CASES WITH CRITICAL GROUND STATES

For certain 2D latticesL and values ofq, theq-state Potts
antiferromagnet has a critical ground state, i.e., asT→0, a
correlation lengthj defined, say, by a spin-spin correlatio
function, goes to infinity. Normally, in statistical mechanic
for a given dimensionalityd and symmetry groupG,
second-order phase transitions can be described by a un
sality class representing a fixed point of the renormalizat
group. Conformal field theory methods have provided a po
erful way to understand these universality classes and
associated critical exponents in terms of Virasoro algeb
with given central charges and scaling dimensions@28–30#.
lues of

TABLE II. Comparison of values ofW„tr(Ly),FBCy ,q… with W(tr,q) for 4<q<10. For each value ofq,

the quantities in the upper line are identified at the top and the quantities in the lower line are the va
RW„tr(Ly),FBCy ,q…. The FBCy is symbolized asF in the table.

q W„tr(2),F,q… W„tr(3),F,q… W„tr(4),F,q… W(tr,q) W(tr,q) l

4 2 1.77173 1.67619 1.46100 1.333333
1.369 1.213 1.147 1

5 3 2.72998 2.60495 2.26411 2.250000
1.325 1.206 1.151 1

6 4 3.71457 3.579715 3.20388 3.200000
1.248 1.159 1.117 1

7 5 4.70571 4.56515 4.16819 4.166667
1.200 1.129 1.095 1

8 6 5.69974 5.55530 5.14358 5.142857
1.167 1.108 1.080 1

9 7 6.695395 6.54810 6.12539 6.125000
1.143 1.093 1.069 1

10 8 7.69208 7.54259 7.11134 7.111111
1.125 1.082 1.061 1
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TABLE III. Comparison of values ofW„hc(Ly),FBCy ,q… with W(hc,q) for 3<q<10. For each value of
q, the quantities in the upper line are identified at the top and the quantities in the lower line are the
of RW„hc(Ly),FBCy ,q). The FBCy is symbolized asF in the table.

q W„hc(2),F,q… W„hc(3),F,q… W(hc,q) W(hc,q)ser W(hc,q) l

3 1.82116 1.76567 1.6600~5! 1.6600 1.658312
1.097 1.064 1

4 2.79468 2.72942 2.6038~7! 2.6034 2.603417
1.073 1.048 1

5 3.78389 3.71448 3.5796~10! 3.5795 3.579455
1.057 1.038 1

6 4.77760 4.70568 4.5654~15! 4.5651 4.565085
1.046 1.031 1

7 5.77336 5.69973 5.5556~17! 5.5553 5.555278
1.039 1.026 1

8 6.77028 6.69539 6.5479~20! 6.5481 6.548095
1.034 1.023 1

9 7.76793 7.69208 7.5424~22! 7.5426 7.542587
1.030 1.020 1

10 8.76607 8.68945 8.5386~25! 8.5382 8.538222
1.027 1.018 1
ng
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In addition to phase transitions involving ferromagnetic lo
range order at low temperatures, this is also true of anti
romagnetic transitions on bipartite lattices, but the situat
is more complicated on nonbipartite lattices, as is illustra
by the fact that the isotropic Ising antiferromagnet on
triangular lattice has no finite-temperature phase transi
but is critical atT50.

Theq53 Potts antiferromagnet on the square lattice ha
critical ground state with central chargec51, as a conse-
quence of the fact that atT50 this model can be mapped t
a critical six-vertex model@8#. From the exact solution in
Ref. @9#, it can be argued that theq54 Potts antiferromagne
on the triangular lattice is also critical, which is closely r

TABLE IV. Comparison of values ofW„sq(Ly),PBCy ,q… with
W(sq,q) for 3<q<10. For each value ofq, the quantities in the
upper line are identified at the top and the quantities in the lo
line are the values ofRW„sq(Ly),PBCy ,q…. The PBCy is symbol-
ized asP in the table.

q W„sq(3),P,q… W„sq(4),P,q… W(sq,P,q)
3 1.25992 1.58882 1.53960̄

0.8183 1.032 1
4 2.22398 2.37276 2.3370~7!

0.9516 1.015 1
5 3.17480 3.26878 3.2510~10!

0.9766 1.0055 1
6 4.14082 4.21082 4.2003~12!

0.9858 1.002505 1
7 5.11723 5.17377 5.1669~15!

0.9904 1.0013 1
8 6.10017 6.14792 6.1431~20!

0.9930 1.0008 1
9 7.08734 7.12881 7.1254~22!

0.9947 1.0005 1
10 8.07737 8.11409 8.1122~25!

0.9957 1.0002 1
r-
n
d
e
n

a

lated to the fact that theq53 Potts antiferromagnet on th
kagomélattice is critical atT50 @29#. We recall that given
the Virasoro algebra with central extension

@Lm ,Ln#5~m2n!Lm1n1
c

12
m~m221!dm1n,0 ~6.1!

and the corresponding Kac-Moody algebra realized at levk

@Jm
a ,Jn

b#5cabcJm1n
c 1 1

2 kndabdm1n,0 ~6.2!

with structure constantscabc , as connected via the Sugawa
relation ~e.g.,@28#!

r TABLE V. Comparison of values ofW„tr(Ly),PBCy ,q… with
W(tr,q) for 4<q<10. For each value ofq, the quantities in the
upper line are identified at the top and the quantities in the lo
line are the values ofRW„tr(Ly),PBCy ,q…. The PBCy is symbolized
asP in the table.

q W„tr(3),P,q… W„tr(4),P,q… W(tr,q)
4 1.58740 1.18921 1.46100

1.0865 0.8140 1
5 2.35133 2.21336 2.26411

1.0385 0.9776 1
6 3.23961 3.185055 3.20388

1.0112 0.9941 1
7 4.17934 4.15965 4.16819

1.0027 0.99795 1
8 5.14256 5.13936 5.14358

0.99980 0.9992 1
9 6.11803 6.12324 6.12539

0.99880 0.99965 1
10 7.10059 7.11027 7.11134

0.99849 0.99985 1
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Ln52
1

C2~g!1k (
m52`

`

:Jm
a Jn2m

a : ~6.3!

it follows that

c5
dim~g!

C2~g!/k11
~6.4!

whereC2(g) is the quadratic Casimir operator for the alg
bra g. In particular,

g5su~M !k51⇒c5M21. ~6.5!

Hence, from Eq.~6.5! together with the finding@29# that the
Kac-Moody algebra is su(3)k51 for theT50 q53 Potts AF
on the kagome´ lattice, it follows thatc52 for this critical
ground state. Given that there is a close connection betw
the Potts antiferromagnets withq53 on the kagome´ lattice
and with q54 on the triangular lattice, which leads to th
relationW(kag,q53)5W(tri,q54)1/3 @9#, this suggests tha
this value ofc52 also holds for theT50, q54 Potts AF on
the triangular lattice.

Here we would like to point out that determinations of t
ground state entropy on infinitely long strips of finite wid
can be used to obtain the central chargec for Potts antifer-
romagnets with critical ground states. If one considers
model on a lattice of sizeLx3Ly , then, in the limit as
Lx→`, one has@31#

f strip,Ly
5 f bulk1

f surf

Ly
1

D

Ly
2 1O~Ly

23!, ~6.6!

where f surf is nonzero~zero! for free ~periodic! boundary
conditions in they direction and

D5H p

6
c for PBCy

p

24
c for FBCy.

~6.7!

For the critical ground states of interest here, viz.,q53,4,3
on the square, triangular, and kagome´ lattices, respectively
as well as other possible 2D cases, the Potts antiferroma
exhibits ground state entropy without frustration, and the
duced free energy~per site! f 5 limN→` N21 ln Z is given
simply by the ground state entropy
f (L,q)PAF5S0(L,q)PAF/kB , Hence, Eq.~6.6! becomes

Sstrip,Ly
5Sbulk1

Ssurf

Ly
1

D

Ly
2 1O~Ly

23!. ~6.8!

Thus, calculations ofSstrip,Ly
for several different values o

Ly can yieldc. Normally, one would do this via the mos
general and robust method, namely, Monte Carlo simu
tions. For smallLy values, we have shown that it is actual
possible to get exact analytic results, but this method is
competitive with Monte Carlo simulations for strips wit
larger values ofLy . One might note in passing that for th
q53 Potts AF on the infinite square strip with PBCy and
cross sections forming squares, takingLy54, using the fact
en

e

net
-

-

ot

thatSsurf50 in this case, and dropping terms of orderLy
23 in

Eq. ~6.8!, we obtain the estimatec50.96, quite close to the
exact valuec51.

VII. CONCLUSIONS

In summary, we have studied a different type of approa
to the 2D thermodynamic limit for the ground state entrop
or equivalently, the ground state degeneracy per site,W, of
the q-state Potts antiferromagnet, using infinitely long stri
of increasing widths. We have found that the approach oW
to its 2D thermodynamic limit is quite rapid; for modera
values ofq and widthsLy.4, W(LLy

,q) is within about 5%

andO(1023) of the 2D value for free and periodic bounda
conditions, respectively. We have also proved that the
proach ofW to the 2D thermodynamic limit is monotoni
~nonmonotonic! for free ~periodic! boundary conditions in
the transverse direction. Finally, we have noted that th
ground state entropy determinations on infinite strips can
used to obtain the central charge for cases with criti
ground states.
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APPENDIX

We gather together here the exact analytic formulas
which our numerical tables are based. It should be emp
sized that the entries in these tables and the resultant con
sions about the rapidity of the approach ofW to the 2D
thermodynamic limit for infinitely long strips with free o
periodic transverse boundary conditions could also h
been obtained using purely numerical Monte Carlo calcu
tions. The usefulness of the analytic formulas~which are
elementary forLy51,2) is just that they enable one to che
the results more directly.

1. Square lattice, FBCy

For infinitely long strips of the square lattice with FBCy ,
we have

W„sq~Ly51!,FBCy ,q…5q21, ~A1!

W„sq~Ly52!,FBCy ,q…5~q223q13!1/2, ~A2!

W„sq~Ly53!,FBCy ,q…5221/3$~q22!~q223q15!

1@~q225q17!~q425q3111q2

212q18!#1/2%1/3. ~A3!

W„sq(Ly54),FBCy ,q… is given by the maximal root of the
cubic equation

j31bsq~4!,1j
21bsq~4!,2j1bsq~4!,350, ~A4!

where the coefficientsbsq(4),k , k51,2,3 were listed in
Ref. @25#.
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2. Triangular lattice, FBC y

For the triangular lattice strips with FBCy , we have

W„tr~Ly52!,FBCy ,q…5q22, ~A5!

W„tr~Ly53!,FBCy ,q…5221/3$~q327q2118q217!

1@q6214q5181q42250q3

1442q22436q1193#1/2%1/3.

~A6!

W„tr(Ly54),FBCy],q… is given by the maximal root of the
quartic equation

j41btr~4!,1j
31btr~4!,2j

21btr~4!,3j1btr~4!,450, ~A7!

where thebtr(4),k , k51,...,4 were listed in Ref.@25#.

3. Honeycomb lattice, FBCy

For the honeycomb lattice strips with FBCy , we have

W„hc~Ly52!,FBCy ,q…5~q425q3110q2210q15!1/4.
~A8!

W„hc(Ly53),FBCy ,q… is given by the maximal root of the
cubic equation

j31bhc~3!,1j
21bhc~3!,2j1bhc~3!,350, ~A9!

where thebhc(3),k , k51,2,3 were listed in@25#.

4. Square lattice, PBCy

We first consider a strip of the square lattice with PBy
and transverse cross sections forming triangles. Depen
on one’s labelling conventions, this corresponds toLy53 or
l

,

ng

Ly54, where in the latter case, one interprets the perio
boundary conditions as identifying the top and bottom ve
ces for each value ofx. We calculate

W„sq~Ly53!,PBCy ,q…5~q326q2114q213!1/3.
~A10!

For the next larger size, i.e., transverse cross sections fo
ing squares, corresponding toLy54 or Ly55 in the respec-
tive labelling conventions described above, theW function is
given by @25#

W„sq~Ly54!,PBCy ,q…

5221/4$~q428q3129q2255q146!

1@q8216q71118q62526q511569q423250q3

14617q224136q11776#1/2%1/4. ~A11!

5. Triangular lattice, PBCy

We next consider a strip of the triangular lattice wi
PBCy , represented as a square lattice with additional dia
nal bonds from, say, the upper left to lower right vertices
each square. For the case where the transverse cross se
form triangles, corresponding toLy53 or Ly54 in the
above labelling conventions, we calculate

W„tr~Ly53!,PBCy ,q…5~q329q2129q232!1/3.
~A12!

For the next larger size, with transverse cross sections fo
ing squares,W is @25#

W„tr~Ly54!,FBCy],q…

5221/4~q23!1/4$~q329q2133q248!1~q24!

3@q4210q3143q22106q1129#1/2%1/4. ~A13!
b.
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